Членистоногие Класс Насекомые (Insecta) (ч.5)

Все насекомые очень чувствительны к изменениям температуры, влияние которой на активность, длительность развития и длительность жизни насекомых исключительно велико. Каким образом насекомые, одетые в плотный панцирь, быстро воспринимают изменения температуры? Оказалось, что у насекомых есть особые теплочувствительные участки на поверхности тела, например у перелетной саранчи у основания усиков есть места с особо тонкой кутикулой, подстилаемой чувствительными клетками. У многих такими органами оказываются особые короткие толстостенные волоски. Такие волоски на лапке таракана воспринимают изменение температуры поверхности, по которой он ходит, в 1° — точность, труднодоступная нашему осязанию. Живущие в воде насекомые хорошо реагируют на изменение давления, по величине которого они получают информацию о той глубине, на которой находятся, а также определяют положение тела. Например, у клопа, называемого водяным скорпионом (Nepa cinerea), дыхальца на 3 сегментах ведут в камеру, выстланную очень тонкой кутикулой (мембраной), под которой лежат чувствительные клетки. В горизонтальном положении тела в воде мембраны на всех сегментах испытывают одинаковое давление, а при изменении положения на одни мембраны давление усиливается, а на другие ослабляется. Эта разница (равнаявсего 0,00015 am!) уже улавливается водным клопом! Очень часто у насекомых бывают развиты органы слуха. Следует только оговориться, что слух у насекомых — это способность к восприятию не только звуковых колебаний, воспринимаемых нами, но и любых колебаний среды. Насекомые — единственные беспозвоночные, для которых точно доказана способность различать звуки. Классическое доказательство—опыты со сверчками, когда в одном помещении перед микрофоном сажали стрекочущего самца, а в другом — самку перед телефоном. Когда включали микрофон, самка устремлялась к телефону. Не надо только думать, что органы слуха у насекомых похожи на наше ухо. Наше ухо воспринимает изменение давления воздуха, вызываемое источником звукового колебания, а у насекомых чаще воспринимается движение воздуха. Наиболее соответствуют нашему уху тимпанальные органы, состоящие из тонких перепонок, натянутых на склеротизованные кольца (вроде нашей барабанной перепонки), под которыми находятся пузыревидно расширенные участки трахей с подходящими к ним нервами. Такие органы есть у кузнечиков и сверчков на голенях передних ног, у саранчовых на боках первого брюшного сегмента, у совок на боках заднегруди, у огневок на первом брюшном сегменте, у цикад на втором и т. д. Проще построенные хордотональные органы— натянутые эластичные волокна, к которым подходят нервные окончания,— видимо, есть у всех насекомых. Интересно, что по опытам, проведенным над несколькими видами бабочек совок, оказалось, что они реагируют на многие звуковые колебания (бабочки, улавливая звук, ускоряют полет и меняют его направление или «притворяются мертвыми»). Частота колебаний, на которую они реагируют, от 15000 до 175000 в секунду, причем сильнее всего реакция на колебания порядка 30000—80000, т. е. такого порядка, как частота ультразвуков, испускаемых летучими мышами. Известно теперь, что ориентировка летучих мышей при полете происходит по принципу радара: они испускают ультразвуки и улавливают их отражение от летящих насекомых. И у ночных бабочек выработалась защитная реакция — изменение полета — в ответ на эти «радарные лучи» их врагов. А некоторые ночные бабочки и сами издают ультразвуки, помогающие распознавать друг друга. У насекомых органами слуха служат и специальные волоски, располагающиеся на всей поверхности тела или на отдельных участках. Точными опытами установлено, что, хотя у сверчка основные слуховые органы — тимпанальные органы находятся на голенях передних ног, ослабленный слух сохраняется у него и после их удаления. 

Волоски, расположенные на церках прямокрылых, улавливают звуки частотой 50—400 колебаний в секунду, а при синхронном колебании — до 800. Подвижно причлененные волоски — это и органы для восприятия направления ветра, тока воздуха. У основания усиков крылатых насекомых есть сложно устроенные органы чувств — джонстоновы органы, с помощью которых насекомые контролируют скорость и направление полета. Те группы насекомых, у которых наиболее хорошо развиты слух и органы слуха, способны и издавать звуки. Это относится к прямокрылым, у которых звуки издаются путем трения переднего края заднего крыла о нижнюю поверхность переднего крыла или о внутренний край бедер задних ног (у саранчовых) либо путем трения особых участков передних крыльев друг о друга (у сверчков, кузнечиков), к цикадам, у которых вибрирует особая мембрана, и т. д. Явственно выражены сходные по строению «стридуляционные» органы у многих насекомых, например у личинок жуков (жуков-оленей, навозников, пассалид), которые живут в небольших объемах пищи. Их звуков мы не слышим, но они явно предупреждают друг друга о взаимно опасном сближении! До сих пор никто не изучал издаваемые ими не слышимые нами звуки. Следует учесть, что часто степень слышимости разных звуков неодинакова. Довольно много людей в общем с нормальным слухом, которые не слышат стрекота кузнечиков; правда, и кузнечики, вероятно, не слышат орудийных выстрелов, так как их стрекот при стрельбе не прекращается. При восприятии звуков волосками трудно провести грань между слухом и осязанием. Многие насекомые воспринимают колебания той поверхности, на которой сидят. Полевой сверчок при частоте колебаний около 1500 в секунду воспринимает их даже при амплитуде в 0,1 миллимикрона (миллимикрон — одна миллионная миллиметра!). А садовая жужелица (Carabus hortensis) воспринимает колебания частоты 200—400 в секунду при амплитуде начиная с 5500 миллимикрон! Органы осязания насекомых — волоски, особенно чувствительные волоски на усиках и церках. Исключительно сильно развиты у насекомых органы химического чувства. В большинстве случаев они разбросаны по всему телу (тонкие полые волоски, в полость которых заходят окончания чувствующих клеток), но основная их масса сосредоточена на усиках и щупиках. Чувствительность насекомых к запахам много выше, чем наша, например пчелы обнаруживают метилгептанон при концентрации в 40 раз меньшей, чем та, при которой его начинаем чувствовать мы. Живущие в земле проволочники имеют обоняние в 10 раз более острое, чем наше, даже в отношении тех веществ, запах которых мы легко обнаруживаем. Именно по запаху обнаруживает и находит пищу большинство насекомых. Меченые самцы бабочки Actias selene прилетали на запах самки за 11 км, а самцы непарного шелкопряда — за 3,8 км. Растворенные вещества могут восприниматься насекомыми не только ротовыми частями, но и лапками. Именно лапками передних ног мухи и бабочки могут пробовать, сладок ли раствор. При этом оказывается, что бабочки «ногами» чувствуют концентрации сахара в воде, в 2000 раз меньшие, чем те, начиная с которых мы распознаем сладковатый привкус! Выяснено, что насекомые могут различать сладкое, соленое, горькое и кислое. У большого водолюба, например, органы чувств на нижнечелюстных щупиках различают сладкий, горький и соленый вкус, а для распознавания кислого служат нервные окончания на вершине нижнегубных. Многие живущие в почве насекомые ориентируются по концентрации растворенных в почвенной влаге веществ, а недавно было показано, что они воспринимают и ничтожные изменения концентрации углекислоты: выделение углекислоты корнями растений привлекает личинок хрущей, проволочников и других живущих в почве вредителей. На усиках находятся и удивительные по чувствительности органы восприятия влажности воздуха. Это небольшие бугорки и ямки (сенсиллы), которые позволяют, например, личинкам щелкунов (проволочникам) различать 0,5% относительной влажности воздуха (100% и 99,5%). Такие органы имеются и на щупиках. Неясно, каким образом некоторые насекомые, например термиты, могут воспринимать магнитное поле, но индийские энтомологи установили, что самки термитов, находящиеся в подземных гнездах, располагаются в гнезде так, что ось тела проходит по магнитному меридиану.

Насекомые улавливают и воздействие электростатического поля, что также пока не может быть объяснено. А. Ф. Лебедев полагал, что основная функция покрова волосков и выростов на поверхности тела насекомого — отведение электрического заряда. Приведенный краткий обзор показывает, что насекомые имеют очень развитую систему органов чувств — анализаторов. Поведение насекомых носит ярко выраженный рефлекторный характер: на раздражение, воспринимаемое тем или иным органом чувств (или их комплексом), насекомое реагирует теми или иными движениями, из совокупности которых формируется поведение насекомых. Иногда поведение имеет характер ярко выраженных реакций на раздражение — характер таксисов. Так, например, живущие в почве личинки насекомых стремятся с поверхности уйти вглубь (положительный геотаксис); активные днем насекомые, попав в темное помещение, стремятся к окну, к свету (положительный фототаксис); многие скрытоживущие насекомые, например чешуйницы, уходят от света (отрицательный фототаксис) и т. п. Часто в зависимости от условий, от физиологического состояния и т. д. меняется реакция на раздражитель. Чернотелки пимелии на севере ареала в нашем полушарии дневные, а на юге ночные. Чернотелки блапсы при более низкой температуре проявляют положительный фототаксис, а при более высокой — отрицательный. Мухи формии (Phormia) привлекаются альдегидом изовалериановой кислоты при концентрации его менее 1:50000, а при более высокой — отпугиваются им. Очень часто определенный раздражитель является сигналом для начала той или иной активности насекомого. Например, перед заходом солнца снижение освещенности до определенной степени интенсивности является тем сигналом, по которому начинается лёт многих хрущей. В Средней Азии, где в мае часты безоблачные дни, можно с точностью до минуты предсказать, когда начнется лёт июньского хруща. Реакции типа тропизмов у насекомых выражены недостаточно четко; сильнее выражены так называемые кинезисы. Как, например, происходит выбор насекомыми места с определенной температурой? Обычно насекомое не просто переходит, допустим, из более жаркого в более прохладное место. Находясь там, где температура выше оптимальной, насекомое быстро и беспорядочно бегает, пока не наткнется на место с более благоприятной температурой, где беспорядочные движения становятся замедленными. Если случайно насекомое выходит за пределы такой благоприятной зоны, оно снова начинает беспокойно передвигаться, пока не попадет в благоприятную зону, где постепенно замедляет движение и наконец, попав в наиболее благоприятную обстановку, останавливается. Итог — «выбрано» наиболее благоприятное место, но не путем прямого к нему устремления, а методом многочисленных «проб и ошибок». Часто действия насекомого, которые кажутся простыми, представляют сложную цепь закономерно меняющихся друг за другом действий. Например, при движении жука-короеда к пригодному для откладки яиц дереву должно смениться в совершенно определенной последовательности не менее 7 реакций на различные раздражители (температура, влажность, цвет, запах и др.). Не только внешние, но и внутренние причины — состояние насекомого — определяют поведение. Самка жука, сегодня летающая, завтра, после оплодотворения, в точно таких же условиях среды не летает. Рабочая пчела, которая вчера не оставляла улей, несмотря на летную погоду, сегодня начинает летать за взятком. Поведение насекомых носит характер в основном наследственно закрепленных инстинктов, представляющих определенную очень длинную и сложную цепь безусловных рефлексов. Инстинктивная деятельность многих насекомых (жуков-навозников, пчел, термитов) очень сложная, их поведение соответствует обычным условиям их жизни и производит впечатление «разумности». Однако такое наследственно закрепившееся поведение при изменении условий становится часто нецелесообразным и насекомое или его потомство погибает. Много примеров этому привел замечательный наблюдатель природы французский энтомолог Ж. А. Фабр, очерки которого («Жизнь насекомых») следует прочесть каждому, кто интересуется насекомыми. Однако после работ Фабра долгое время недооценивалась роль индивидуального опыта, возможность выработки условных рефлексов у насекомых. При работах с пчелами выяснилась возможность выработки у них условных связей, «обучения» пчел.

Оказалось возможным при дрессировке пчел научить их распознавать цвета и некоторые геометрические фигуры, брать пищу из сосудов определенной формы и цвета. Кроме того, оказалось, что пчелы могут, общаясь, передавать друг другу индивидуальный опыт. Если научить пчелу узнавать чашки с сахарным сиропом определенной формы и цвета, а затем поместить эти чашки в районе облета пчелы, пчела, прилетев в улей, совершая движения определенным образом, указывает другим пчелам своего улья направление, по которому нужно лететь за пищей. Некоторые исследователи, например у нас П. И. Мариковский, изучая поведение муравьев, нашли у них целый ряд жестов, которые служат сигналами, побуждающими других особей к определенному поведению («дай пищи», «опасность» и т. п.). За последнее десятилетие были проведены исследования, показавшие, что у многих насекомых, особенно у общественных (муравьи, термиты и др.), выделяются биологически активные вещества, известные под общим названием «феромоны», которые влияют на развитие других особей и определяют их поведение. Так, например, насекомые могут оставлять определенные следы, по которым двигаются другие особи того же вида. Выделения матки пчелы в небольшом улье тормозят поведение рабочих особей, направленное на воспитание других маток, и т. п. В данном случае речь идет об определенных химических соединениях, выделяемых одной особью и влияющих на поведение других. Такая химическая регуляция поведения представляет одну из очень интересных и еще малоисследованных особенностей поведения насекомых. Очень интересна зависимость поведения от степени скученности насекомых данного вида. Поведение же в свою очередь, как оказалось, определяет и многие черты строения насекомого, что было впервые установлено для многих саранчовых Б. П. Уваровым. За последние 10 лет выяснилось, что влияние друг на друга особей одного вида у многих гусениц тоже приводит к различию и их поведения и их строения (как это, например, хорошо заметно на гусеницах ильмового ногохвоста, окраска которых при одиночном и скученном образе жизни различна). В этих случаях имеет значение уже не выделение каких-либо веществ, а воздействие особей друг на друга через нервную систему. Особенно сложное поведение наблюдается у так называемых общественных насекомых, т. е. у тех, которые всегда живут, колониями и иначе существовать не могут. В сущности, колония общественных насекомых — это одна семья, потомство одной самки (у термитов, пчел, муравьев). Для общественных насекомых характерно разделение функций, связанное с различными физиологическими особенностями и различиями в строении отдельных групп особей. В этом коренное отличие общественных насекомых от человеческого общества. В колониях общественных насекомых есть способные к размножению особи — самцы и самки (самок часто называют «матками» или «царицами») — и особи с недоразвитыми половыми железами, неспособные к размножению, но способные заготовлять пищу, выращивать личинок и т. д. Колония общественных насекомых существует именно благодаря такому разделению функций между различными группами особей. Естественно, что слаженная целостная жизнь колонии может обеспечиваться только при определенным образом координированном поведении всех входящих в нее особей. (Подробнее этот вопрос разобран в главе о перепончатокрылых). Почти все насекомые раздельнополы. Только немногие, например обитающая в гнездах термитов муха Termitoxenia, гермафродиты. В некоторых местах в Калифорнии гермафродитом оказался и австралийский желобчатый червец: у него часть половых клеток превращается в сперматозоиды, часть в яйца, и самооплодотворение происходит внутри особи, имеющей вид самки; иногда часть яиц бывает не оплодотворена — из них развиваются самцы, утратившие биологическое значение.





Комментарии   

Оставьте комментарий